An Apochromatic Lens Based Fabry-Pérot Interferometer for Accurate Measurements of Lower Thermospheric Neutral Wind Velocity and Temperature

Trond S. Trondsen ${ }^{1}$, Craig Unick ${ }^{1}$, Devin Wyatt ${ }^{1}$, John W Meriwether ${ }^{2}$, Yiding Chen ${ }^{3}$ and Li Wenbo ${ }^{3}$
${ }^{1}$ Keo Scientific Ltd., Calgary, Canada, ${ }^{2}$ New Jersey Institute of Technology, Center of Solar-Terrestrial Research, Newark, NJ, United States, ${ }^{\mathbf{3}}$ Chinese Academy of Sciences, Institute of Geology and Geophysics, Beijing China

FABRY-PÉROT INTERFEROMETRY AND AERONOMY
Fabry-Pérot interferometry for sensing Doppler winds and tem ratures from thermospheric airglow is a well established tec ique. Wavelength shifts and spectral broadening of airglo missions impart changes to the ring pattern produced by the解 ared to a calibration produced by the airglow emissions om a local source, so that the shifts and broadening can be quanified relative to a known stable reference to determine velocitie nd temperatures. Narrow band filters, in a filter wheel, precee irglow emission intensities are faint enough that long integr ions of several minutes must be employed to gather enoug signal to make reasonable measurements. Increasing the aperture of the instrument improves the temporal cadence of the derived velocities and temperature. As the aperture increases, the speed of he focusing lens must increase, which leads to an increase in aberrations. Our lens design replaces the traditional achromatic lens used in FPI instruments and provides an improvement of the qual accurate or higher-cadence derived quantities.

Abstract

Fabry-Pérot interferometry is a well-established method of interrogating the lower thermosphere region of the Earth's atmosphere. Nighttime measurements of vis ble and infrared airglow in four cardinal directions and Zenith are inverted to yield wind speed and direction as well as temperature. A 300 mm focal length len mased on a legacy design which passes emissions through a narrow-band filter, an etalon, and a focusing lens to image onto a CCD focal plane array, in contrast to raditional interferometers which often rely on telecentric filtering with complex optical arrangements prior to the light entering the etalon. The quality of the ring attern greatly influences the residual error of processing the raw data into derived quantities. Our new instrument employs a novel apochromatic lens system devel oped at Keo Scientific that yields lower vignetting and sharper rings over an extended wavelength range, enabling higher quality measurements over the entire range of wavelengths. Examples of ring patterns and derived quantities from our first $\mathrm{f} / 3,100 \mathrm{~mm}$ diameter etalon instrument are presented here. The instrument was first deployed in July, 2019, by the Chinese Academy of Sciences Institute of Geology and Geophysics at their field-station in Mohe, Heilongjiang in Northern China

FPI DESIGN LEGACY AND CURRENT APPROACH
There are two legacy architectures of Fabry-Pérot interferometers for aeronomy research: a telecentric optics arrangement and a far field source arrangement. The telecentric designs focus the incoming fields normal to the filter. The light must be collimated again prior to passing through the etalon. In the far field source arrangement, the light from the source is passed through the filter assuming that the disdesign has a filter, etalon and lens. Since we do not use telecentric optics we have better overall throughput and uniformity, but our design requires a larger diameter filter than the telecentric type. An articulated mirror assembly is used to sample the four cardinal directions at 45° elevation, the zenith direction and the calibration source.

The FPI cross section shows how the components
hit together. The major components are the sky scanner (top), calibration sphere, filter
talon, lens, and Andor EMCCD camer

The Zemax mut or chromatic lens destigice of thows the op
tial path starting beneath the tical path starting beneath the
etalon. This lens has 6 elements in 4 groups, with a focusing mechanism
on the last lens before the sensor.

INNOVATION - IMPROVED CHROMATIC PERFORMANCE
The quality of the derived thermospheric velocity and temperature is related to the ape of the recorded ring pattern relative to the ideal Airy function shape. A sing chromatic lens was used in a previous version of this instrument, but residua mage curvature and axial chromatic aberration contributed performance degrada ons. An apochromatic lens, with 6 elements in 4 groups, provides a flat imas ane with excellent chromatic aberration performance.

The distortion and lateral chromatic aberration of the lens are important to the raw ata inversion, where calibration images are captured when the instrument is illuminated with diffuse 632.8 nm laser light. It is important that the calibration ring conform to the Airy function spacing, and this spacing conformity is necessary for all observation wavelengths since they are relative to only one calibration wave ength. This allows accurate data inversion at all observation wavelengths. The re orded lineshape from the calibration source is also used to remove systematic gradations introduced into the data from residula aberrations.

Spot Diagram

The circles in the spot function diagrams and the black line in the MTF plot represent the diffraction limit at 630 nm . The optical system was optimized for tanalong the ring ll advers aftect deantities.

The residual lateral chromatic aberration is just over $3 \mu \mathrm{~m}$ from the center to the edge of the image over the 550 to 900 nm wavelength range. Residual distortion is approximately $0.0035 \%(\sim 0.2 \mu \mathrm{~m})$ from the center to the edge of the image. This error is equivalent to about 15% of one 2×2 binned pixel ($26 \mu \mathrm{~m}$).

DERIVED TEMPERATURE AND WIND VELOCITY
Shown below are a series of images acquired at the Mohe field site on August 5, 2019. The six images are five sky observations epresent typical data collected by this instrument.

Temperatures and winds derived from the raw data above are shown in the following graph

Neutral Wind Velocity, OI 630 nm .

The ring pattern to the right is from emis sion at 892 nm . Note the sharp resolution of the two lines of this doublet. An inveraccount for both emission peaks in the ring pattern.

conclusion
The FPI described in this poster was deployed in July 2019 at Mohe, China, where it has been operating and collecting data The design of the optics has been described here and shows poential to improve the quality or cadence of the derived temperaand neutral wind velocity of the upper thermosphere. We will provement in the coming yea

